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Abstract: Let E(p)ẋ = A(p)x+B(p)u be a family of singular linear systems smoothly dependent on a vector of
real parameters p = (p1, . . . , pn). In this work we construct versal deformations of the given differentiable family
under an equivalence relation, providing a special parametrization of space of systems, which can be effectively
applied to perturbation analysis. Furthermore in particular, we study the behavior of a simple eigenvalue of a
singular linear system family E(p)ẋ = A(p)x+B(p)u.
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1 Introduction
Let us consider a finite-dimensional singular linear
time-invariant system

Eẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (1)

where x is the state vector, u is the input (or control)
vector, E,A ∈ Mn(IC), B ∈ Mn×m(IC), and ẋ =
dx/dt. We will represent the systems as a triples of
matrices (E,A,B), and we will denote byM, the set
of this kind of triples. In the case where E = In the
system is standard denoted by a pair (A,B).

Singular systems (also called diferential/algebraic
systems, descriptor systems or generalized systems),
are found in engineering systems such as electrical,
chemical processing circuit or power systems among
others, and they have attracted interest in recent years.

The transfer matrix of the system (E,A,B) re-
lating the inputs to the outputs is given by H(s) =
(sE − A)−1B, so there is a singular matrix pencil
(sE−A) associated with the system. Eigenvalues cor-
responding to the matrix pencil (sE − A) associated
with the system (1) play an important role in analysis
of the stability of the solutions. The values of eigen-
values can correspond to frequencies of vibration, or
critical values of stability parameters, or energy levels
of atoms.

Sometimes it is possible to change the value
of some eigenvalues introducing proportional and
derivative feedback controls in the system. The val-
ues of the eigenvalues that can not be modified by any
feedback (proportional or derivative), correspond to

the eigenvalues of the singular pencil (sE − A B),
that we will simply call eigenvalues of the triple
(E,A,B).

Perturbation theory of linear systems has been ex-
tensively studied over the last 50 years starting from
the works of Rayleigh and Schrodinger [13]. It is
a tool for efficiently approximating the influence of
small perturbations on different properties of the un-
perturbed system.

It is well known that if λ0 is an eigenvalue of a
singular system Eẋ = Ax + Bu for almost all per-
turbations of the system, the perturbed system has no
eigenvalues (see [4], for example). We are interested
in analyzing the perturbation of the eigenvalues in the
case where not all eigenvalues disappear under small
perturbations.

When the perturbed system depends on parame-
ters, we say that we have a family of systems. Addi-
tionally, if the parameters of the family vary slightly
in a neighborhood of a fixed value, we says that we
have a deformation.

The study of all deformations is sometimes re-
duced to the study of the only one from which the
rest derives. This new family must be richer, in some
sense, than any other, giving us all possible bifurca-
tions of the original system. This kind of deformations
is called versal.

The Arnold technique [2] to construct a versal de-
formation of a differentiable family of square matri-
ces under conjugation has been generalized by sev-
eral authors to matrix pencils under the strict equiv-
alence [5, 10], pairs or triples of matrices under the
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action of the general linear group [17], pairs of matri-
ces under the feedback similarity [6].

Versal deformations provide a special
parametrization of matrix spaces, which can be
effectively applied to perturbation analysis and inves-
tigation of complicated objects like singularities and
bifurcations in multi-parameter dynamical systems.

In the sequel we will denote by M =
{(E,A,B) | E,A ∈ Mn(IC), B ∈ Mn×n(IC)} the
set of singular systems.

2 Versal deformations
First, we recall the definition of versal deformation.
Let M be a smooth manifold (in our particular setup
M =M).

Definition 1 Let U0 be a neighborhood of the origin
of ICℓ. A deformation φ(λ) of x0 is a smooth mapping

φ : U0 −→M

such that φ(0) = x0. The vector λ = (λ1, . . . , λℓ) ∈
U0 is called the parameter vector.

The deformation φ(λ) is also called differentiable
family of elements of M .

Let G be a Lie group acting smoothly on M . We
denote the action of g ∈ G on x ∈M by g ◦ x.

Definition 2 The deformation φ(λ) of x0 is called
versal if any deformation φ′(ξ) of x0, where ξ =
(ξ1, . . . , ξk) ∈ U ′

0 ⊂ ICk is the parameter vector, can
be represented in some neighborhood of the origin as

φ′(ξ) = g(ξ) ◦ φ(ϕ(ξ)), ξ ∈ U ′′
0 ⊂ U ′

0, (2)

where ϕ : U ′′
0 −→ ICℓ and g : U ′′

0 −→ G are differ-
entiable mappings such that ϕ(0) = 0 and g(0) is the
identity element of G. Expression (2) means that any
deformation φ′(ξ) of x0 can be obtained from the ver-
sal deformation φ(λ) of x0 by an appropriate smooth
change of parameters λ = ϕ(ξ) and an equivalence
transformation g(ξ) smoothly depending on parame-
ters.

A versal deformation having minimal number of
parameters is called miniversal.

The following result was proved by Arnold [2]
in the case where Gl(n; IC) acts on Mn(IC), and was
generalized by Tannenbaum [17] in the case where a
Lie group acts on a complex manifold. This provides
the relationship between a versal deformation of x0
and the local structure of the orbit.

Theorem 3 [17]

1. A deformation φ(λ) of x0 is versal if and only if
it is transversal to the orbit O(x0) at x0.

2. Minimal number of parameters of a versal defor-
mation is equal to the codimension of the orbit of
x0 in M , ℓ = codimO(x0).

Let {v1, . . . , vℓ} be a basis of any arbitrary com-
plementary subspace (Tx0O(x0))c to Tx0O(x0) (for
example, (Tx0O(x0))⊥).

Corollary 4 The deformation

x : U0 ⊂ ICℓ −→M, x(λ) = x0 +
ℓ∑

i=1

λivi (3)

is a miniversal deformation.

We are interested in constructing a versal defor-
mation of a given differentiable family of singular sys-
tems (E(p), A(p), B(p)) ∈M.

In order to construct a versal deformation of a sys-
tem (E0, A0, B0) in the given family, we define the
following equivalence relation.

Definition 5 Two triples (E′, A′, B′) and (E,A,B)
inM are called equivalent if, and only if, there exist
matrices P,Q ∈ Gl(n; IC), R ∈ Gl(m; IC), K1,K2 ∈
Mm×n(IC) such that

(E′, A′, B′)=(QEP+QBK1, QAP+QBK2, QBR),
(4)

or in a matrix form

(
E′ A′ B′

)
= Q

(
E A B

) P 0 0
0 P 0
K1 K2 R

 .

It is easy to check that this relation is an equiva-
lence relation.

Let G = {(P,Q,R,K1,K2) ∈ Gl(n; IC) ×
Gl(n; IC) × Gl(m; IC) × Mm×n(IC) × Mm×n(IC)} be
a set. Notice that this set is a Lie group.

The system (E,A,B) ∈ M, for which there ex-
ists a matrix K1 such that E + BK1 is invertible is
called standarizable, and in this case there exist matri-
ces P,Q,K1 such that QEP + QBK1 = In. Con-
sequently the equivalent system is standard. Notice
that the standarizable character is invariant under the
equivalence relation being considered.

If the original system is standard and if we
want to preserve this condition under the equiva-
lence relation we restrict the operation to the subgroup
G1 = {(P, P−1, R, 0,K2) ∈ Gl(n; IC) × Gl(n; IC) ×
Gl(m; IC)×Mm×n(IC)×Mm×n(IC)} ⊂ G, so obtaining
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alternatively the feedback similarity relation defined
over the set of standard systems.

The equivalence relation (4) can be seen as the ac-
tion of the Lie group G onM in the following manner.

α : G ×M→M
(g, x)→ (QEP +QBK1, QAP +QBK2, QBR)

(5)
where g = (P,Q,R,K1,K2), and x = (E,A,B).
(From now on and if confusion is not possible, we
will make use this reduced notation).

Given a triple x0 = (E0, A0, B0) ∈M we define
the map

αx0(g) = α(g, x0). (6)
The equivalence class of the triple x0 with respect to
the G-action, called the G-orbit of x0, is the range of
the function αx0 and is denoted by

O(x0) = Imαx0 = {αx0(g) | g ∈ G}. (7)

Let us denote by TeG the tangent space to the
manifold G at the unit element e. It is well known
that

TeG = (Mn×n(IC))
2 ×Mm×m(IC)× (Mm×n(IC))

2,
Tx0M =M.

Proposition 6 Let dαx0 : TeG −→ M be the differ-
ential of αx0 at the unit element e. Then

dαx0(G) =
(EP +QE +BK1, AP +QA+BK2, BR+QB),

(8)
where G = (Q,P,R,K1,K2) ∈ TeG.

Clearly, Tx0O(x0) = Im dαx0 ⊂M.
In order to apply Theorem 3 we will try to obtain

a complementary subspace of Tx0O(x0), in particular
an orthogonal subspace. For that we need to consider
a scalar product.

Hermitian product in M to be dealt with in this
paper is the following:

⟨x1, x2⟩ =
trace(E1E

∗
2) + trace(A1A

∗
2) + trace(B1B

∗
2),

(9)
where xi = (Ei, Ai, Bi) ∈ M, and A∗ denotes the
conjugate transpose of the matrix A.

A description of Tx0O(x0)⊥ for x0 ∈ M can be
easily deduced.

Proposition 7 Let x0 = (E,A,B) ∈ M be a triple
of matrices. Then (X,Y, Z) ∈ Tx0O(x0)⊥ if and only
if

EX∗ +AY ∗ +BZ∗ = 0
X∗E + Y ∗A = 0

X∗B = 0
Y ∗B = 0
Z∗B = 0


. (10)

We will use the description of the orthogonal
complementary subspace to the tangent space to the
orbit of x0 obtained in Proposition 7 for explicitly ob-
taining miniversal deformations.

Proposition 8 Let x0 = (E,A,B) be a triple of ma-
trices and {u1, . . . , ur} be a basis of the vector sub-
space Tx0O(x0)⊥. Then the map defined by

φ(λ1, . . . , λr) = x0 + λ1u1 + . . .+ λrur

is a miniversal deformation with respect to the G-
action.

Example 1 Let

((
0 0
0 1

)
,

(
0 0
0 3

)
,

(
1
0

))
be a sys-

tem. Solving the system (10), we obtain the following
“orthogonal” miniversal deformation:((

0 0
−3λ1 1− 3λ2

)
,

(
0 0
λ1 3 + λ2

)
,

(
1

3λ1

))
.

Now we can obtain a minimal miniversal defor-
mation by selecting a basis of a complementary space
to the tangent space to the orbit in the following man-
ner: for the first vector, we put 1 in λ1 in the matrix(
0 0
λ1 3 + λ2

)
and zero for all the other parameters

in this matrix and we put zero in all parameters in the
other matrices. For the second vector, we put 1 in λ2

in the same matrix and zero for the other all param-
eters in this matrix and we put zero in all parameters
in the other matrices, obtaining the following minimal
miniversal deformation:((

0 0
0 1

)
,

(
0 0
λ1 3 + λ2

)
,

(
1
0

))
.

In this reduced form it is easy to analyze the
eigenvalues of the perturbed systems. If λ1 ̸= 0,
the perturbed system has no eigenvalues whereas if
λ1 = 0 the system has only one eigenvalue, concretely
3 + λ2.

The versal deformation can be effectively applied
to perturbation analysis of eigenvalues of a given sys-
tem. If we have a family of systems in a neighborhood
of a system we can relate it with a miniversal defor-
mation in the following manner.

First of all we consider the stabilizer of x0 under
the G-action, this set is defined as the null-space of the
function αx0 − x0. This is denoted by

S(x0) = Ker (αx0 − x0) = {g ∈ G | g ◦ x0 = x0}.
(11)
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The differentiability of the mapping αx0 ensures that
S(x0) is a smooth submanifold of G.

As in the case of orbits, we can consider
TeS(x0)⊥ with respect a Hermitian product in the
space TeG. Concretely we are going to consider in
this paper the following

⟨y1, y2⟩ =
trace(Q1Q

∗
2) + trace(P1P

∗
2 ) + trace(R1R

∗
2)+

trace(K11K
∗
12) + trace(K21K

∗
22),

(12)
where yi = (Qi, Pi, Ri,K1i ,K2i) ∈ TeG.

Theorem 9 The tangent space to the stabilizer of the
system x0 and the corresponding normal complemen-
tary subspace with respect to TeG can be found in the
following form

1. TeS(x0) = Ker dαx0 ⊂ TeG,
2. (TeS(x0))⊥ = Im dα∗

x0
⊂ TeG.

Corollary 10 The mappings dαx0 and dα∗
x0

define
one-to-one correspondences between the subspaces
Tx0O(x0) and (TeS(x0))⊥:

Tx0O(x0)
dα∗

x0

−→
←−
dαx0

(TeS(x0))⊥.

As a consequence obtain the following.

Theorem 11 If φ(γ) is a miniversal deformation and
values of the mapping g(ξ) are restricted to belong
to a smooth submanifold R ⊂ G, which is transver-
sal to S(x0) at e and has the minimal dimension
dimR = codimS(x0), then the mappings ϕ(ξ) and
g(ξ) in representation (2) are uniquely determined by
φ′(ξ).

Let {r1, . . . , rd} be a basis for TeS(x0)⊥, we
have the following.

Corollary 12 The functions g(ξ) and ϕ(ξ) in the ver-
sal deformation reduction (2) are uniquely determined
if the mapping g(ξ) is taken in the form

g(ξ) = e+
d∑

i=1

riµi(ξ),

where µ(ξ) are smooth functions in IC such that
µj(0) = 0, for i = 1, . . . d.

3 Perturbation analysis of simple
eigenvalues of standard systems

For a more comprehensive analysis, we begin study-
ing the case of standard systems. So, we consider sys-
tems in the form ẋ = Ax+Bu with A ∈Mn(IC) and
B ∈ Mn×m(IC). Hence, we will write the systems as
a pair of matrices (A,B).

Remember that λ0 ∈ IC is an eigenvalue of the
system if and only if there exists a non-zero vector v0
such that

Atv0 = λ0v0
Btv0 = 0

}
,

and v0 is called eigenvector of the system for this
eigenvalue.

The eigenvalues of the system (A,B) correspond
to the eigenvalues of the associate singular pencil
(sI − A B) and the eigenvectors correspond to the
left eigenvectors of the pencil.

Remark 13 The vector v0 is an eigenvector of At

corresponding to the eigenvalue λ0, So, λ0 is an
eigenvalue of the matrix A, and the corresponding
eigenvector u0 is a left eigenvector of the matrix At.

Definition 14 An eigenvalue λ0 of a system (A,B) is
called simple if it is simple as eigenvalue of A.

Observe that an eigenvalue of A is not necessarily
an eigenvalue of (A,B).

Proposition 15 ([11]) If λ0 is a simple eigenvalue of
(A,B). Then we can choose an eigenvector u0 of A
and an eigenvector v0 of (A,B) such that ut0v0 ̸= 0.

Sometimes an eigenvalue of (A,B) is not simple
but there can exists a feedback such that the resulting
closed-loop system has a simple eigenvalue as we can
be seen in the following example.

Example 2 Let (A,B) =

((
1 1
0 1

)
,

(
1
0

))
be a sys-

tem. We observe that λ = 1 is an eigenvalue of (A,B)
being a double eigenvalue of A. Taking the feedback(
1 0

)
, the closed-loop system is

((
2 1
0 1

)
,

(
1
0

))
.

It is not difficult to observe that λ = 1 is an eigenvalue
for this system and a simple eigenvalue of A + BF .
Observe that λ = 2 is a simple eigenvalue of A+BF
but not an eigenvalue of (A+BF,B).

Let λ0 be a multiple eigenvalue of At which is a
simple eigenvalue of At + KtBt for some feedback
K.
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Proposition 16 Let λ0 be an eigenvalue and v0 be a
corresponding eigenvector of (A,B). Then λ0 is an
eigenvalue and v0 it is corresponding eigenvector of
(A+BK,B) for all K.

Proof: If Atv0 = λ0v0 and Btv0 = 0 then KtBtv0 =
0 and (At +KtBt)v0 = λ0v0.

Reciprocally, if (At + KtBt)v0 = λ0v0 and
Btv0 = 0, then Atv0 = Atv0+KtBtv0−KtBtv0 =
(At +KtBt)v0 −KtBtv0 = λ0v0. ⊓⊔

Corollary 17 Let K ∈Mm×n(IC) be a feedback such
that µ0 is an eigenvalue of At + KtBt and w0 is a
corresponding eigenvector. If µ is not an eigenvalue
of (A,B), then Btw ̸= 0.

Let (A,B) be a linear system and assume that
the matrices A, B smoothly depend on the vector
p = (p1, . . . , pr) of real parameters. The function
(A(p), B(p)) is called a multi-parameter family of lin-
ear systems. Eigenvalues of linear system functions
are continuous functions λ(p) of the vector of param-
eters. In this section, we are going to study the be-
havior of a simple eigenvalue of the family of linear
systems (A(p), B(p)).

Let us consider a point p0 in the parameter space
and assume that λ(p0) = λ0 is a simple eigenvalue
of (A(p0), B(p0)) = (A0, B0), and v(p0) = v0 is an
eigenvector, i.e.

At
0v0 = λ0v0

Bt
0v0 = 0

}
.

Equivalently

(At
0 +KtBt)v0 = λ0v0

Bt
0v0 = 0

}
, ∀K ∈Mm×n(IC).

Now, we are going to review the behavior of a
simple eigenvalue λ(p) of the family of standard lin-
ear systems.

The eigenvector v(p) corresponding to the simple
eigenvalue λ(p) determines a one-dimensional null-

subspace of the matrix operator

(
At

Bt

)
smoothly de-

pendent on p. Hence, the eigenvector v(p) can be
chosen as a smooth function of the parameters. We
will try to obtain an approximation by means of their
derivatives.

We write the eigenvalue problem as

(At(p) +Kt(p)Bt(p))v(p) = λ(p)v(p)
Bt(p)v(p) = 0.

}
, (13)

or equivalently

At(p)v(p) = λ(p)v(p)
Bt(p)v(p) = 0.

}
. (14)

Taking the derivatives with respect to pi, we have

∂At(p)
∂pi

v(p) +At(p)∂v(p)∂pi
= ∂λ

∂pi
v(p) + λ(p)∂v(p)∂pi

∂Bt(p)
∂pi

v(p) +Bt(p)∂v(p)∂pi
= 0

 .

At the point p0, we obtain(
∂At(p)
∂pi

− ∂λ
∂pi

In
)
|p0

v0 = (λ0In −At(p0))
∂v(p)
∂pi |p0

∂Bt(p)
∂pi |p0

v0 +Bt(p0)
∂v(p)
∂pi |p0

= 0

 .

(15)
This is a linear equation system for the unknowns

∂λ
∂pi

and ∂v(p)
∂pi

, where the matrix λ0In −At(p0) is sin-
gular with rank equal to n− 1 because λ0 is a simple
eigenvalue.

Lemma 18 [11] The matrix λ0In−At(p0)−u0u
t
0 is

invertible.

Under the same conditions we have the following

Proposition 19 The system (15) has a solution if and
only if

ut0

(
∂λ
∂pi |p0

In − ∂At(p)
∂pi |p0

)
v0 = 0

∂Bt(p)
∂pi |p0

v0 +Bt(p0)
∂v(p)
∂pi |p0

= 0

 (16)

where u0 is a left eigenvector for the simple eigen-
value λ0 of the matrix At.

Proof: From the first equation in (16) we obtain a
solution for ∂λ

∂pi |(λ0;p0)
:

∂λ

∂pi
(ut0v0) = ut0

∂At(p)

∂pi
v0,

∂λ

∂pi
=

ut0
∂At(p)

∂p v0

ut0v0
. (17)

We can choice u0 in such away that ut0v0 = 1.
Replacing this solution in the first equation in (15)

we obtain

∂v(p)
∂pi

=

(λ0In −At(p0)− u0u
t
0)

−1

(
∂At(p)
∂pi |pi

− ∂λ
∂pi

In

)
v0.

Now we need to see if this expression verifies the sec-
ond equation of (15). ⊓⊔
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Taking the partial derivative ∂2/∂pi∂pj on both
sides of both equations in the eigenvalue problem
(13), we have:

∂2At(p)
∂pi∂pj

v(p) + ∂At(p)
∂pi

∂v(p)
∂v(p)∂pj+

∂At(p)
∂pj

∂v(p)
∂v(p)∂pi +At(p) ∂

2v(p)
∂pi∂pj

=

∂2λ(p)
∂pi∂pj

v(p) + ∂λ(p)
∂pi

∂v(p)
∂pj

+ ∂λ(p)
∂pj

∂v(p)
∂pi

+

λ(p) ∂
2v(p)

∂pi∂pj
∂2Bt

∂pi∂Pj
v(p)+

∂Bt(p)
∂pi

∂v(p)
∂pj

+ ∂Bt(p)
∂pj

∂v(p)
∂pi

+Bt ∂
2v(p)

∂pi∂pj
= 0


.

At p0 and premultiplying the previous equation
by ut0, we can deduce the following expression for
derivatives ∂2λ(p)

∂pi∂pj |p0

∂2λ(p)
∂pi∂pj |p0

ut0v0 =

ut0
∂2At(p)
∂pi∂pj |p0

v0 + u0
∂At(p)
∂pj |p0

∂v(p)
∂pi |p0

+

u0
∂At(p)
∂pi |p0

∂v(p)
∂pj |p0

−

ut0
∂λ(p)
∂pj |p0

∂v(p)
∂pi |p0

− ut0
∂λ(p)
∂pi |p0

∂v(p)
∂pj |p0

.

Once ∂2λ
∂pi∂pj |p0

we can deduce the values of
∂2v(p)
∂pi∂pj |p0

∂2v(p)
∂pi∂pj |p0

= (At(p)− λ(p)I − u0u
t
0)

−1·(
∂2λ(p)
∂pi∂pj

v(p) + ∂λ(p)
∂pi

∂v(p)
∂pj

+∂λ(p)
∂pj

∂v(p)
∂pi
− ∂2At(p)

∂pi∂pj
v(p)−

∂At(p)
∂pi

∂v(p)
∂pj
− ∂At(p)

∂pj

∂v(p)
∂pi

)
.

Example 3 Consider now, the following differen-
tiable family of standard systems

0 0 0
0 3 + p1 p2
0 p2 4 + p1

 ,

1 + p1
0
0


 .

At p0 = (0, 0), the matrix A has λ = 3 as a sim-
ple eigenvalue (and λ = 4). The corresponding left
and right eigenvectors are v0 = (0, 1, 0) and u0 =
(0, 1, 0).

At(p) = A(p),

∂At

∂p1
=

0 0 0
0 1 0
0 0 1

 ,

∂At

∂p2
=

0 0 0
0 0 1
0 1 0

 ,

∂Bt

∂p1
=

10
0

 ,

∂Bt

∂p2
=

00
0

 .

∂λ(P )
∂p1

=
(
0 1 0

)0 0 0
0 1 0
0 0 1


01
0

 = 1,

∂λ(P )
∂p2

=
(
0 1 0

)0 0 0
0 0 1
0 1 0


01
0

 = 0.

∂2λ(p)
∂p21 |p0

= 2
(
0 1 0

)0 0 0
0 1 0
0 0 1


 0
−1
0


−2
(
0 1 0

)01
0

 = −2− 2 = −4.

∂2λ(p)
∂p22 |p0

= 2
(
0 1 0

)0 0 0
0 0 1
0 1 0


 0

1
−1


−2
(
0 1 0

) 0
1
−1

 = −4,

∂2λ(p)
∂p1∂p2 |p0

= ∂2λ(p)
∂p2∂p1 |p0

= 0.

∂v(p)
∂p1 |p0

=


1 0 0
0 0 0
0 0 −1

−
0 0 0
0 1 0
0 0 0




−1

·
 0 0 0

0 1 0
0 0 1

−
1 0 0
0 1 0
0 0 1



01
0

 =

 0
−1
0

 ,

∂v(p)
∂p2 |p0

=


1 0 0
0 0 0
0 0 −1

−
0 0 0
0 1 0
0 0 0




−1


0 0 0
0 0 1
0 1 0

−
1 0 0
0 1 0
0 0 1



01
0

 = 0
1
−1

 .

∂Bt(p)
∂p1 |p0

v(p0) +Bt(p)∂v(p)∂p1 |p0
=

(
1 0 0

)01
0

+
(
1 0 0

) 0
−1
0

=(0)

∂Bt(p)
∂p2 |p0

v(p0) +Bt(p)∂v(p)∂p2 |p0
=

(
1 0 0

) 0
1
−1

 = (0).
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Then,

λ(p)=3 + p1 − 4p21 − 2p22 +O(3),

v(p)=

01
0

+

01
0

 p1+

 0
1
−1

 p2+O(2).

4 Perturbation analysis of simple
eigenvalues of singular systems

Now we consider singular systems in the form Eẋ =
Ax+ Bu where E,A ∈ Mn(IC) and B ∈ Mn×m(IC).
This will be written we will write as triple of matrices
(E,A,B).

Let M(λ) = (λE − A,B) be a matrix pencil as-
sociated with the triple (E,A,B), λ0 is an eigenvalue
of (E,A,B), if rankM(λ0) < rankM(λ). In the
case where the matrix pencil λE −A is regular this is
equivalent to det(λ0E −A) = 0.

v0 ∈ ICn is an eigenvector corresponding to the
eigenvalue λ0, if (λ0E

t −At)v0 = 0 and Btv0 = 0.

Proposition 20 Let λ0 be an eigenvalue and v0 an
associated eigenvector of the (E,A,B). Then λ0 is
an eigenvalue and v0 an associated eigenvector of
(E +BK1, A+BK2, B) for all K.

Suppose that matrices E,A,B, defining the
singular system, smoothly depend on the vector
p = (p1, . . . , pr) of real parameters. The function
(E(p), A(p), B(p)) is called a multi-parameter fam-
ily of singular systems.

We write the eigenvalue problem as

(λEt(p)−At(p))v(p) = 0
Bt(p)v(p) = 0

}

or equivalently

(λ(Et(p) +K1(p)B
t(p))− (At(p)+

Kt
2(p)B

t(p)))v(p) = 0
Bt(p)v(p) = 0


Taking derivatives we obtain(

∂λ
∂pi

Et(p) + λ∂Et(p)
∂pi

− ∂At(p)
∂pi

)
v(p)+

(λEt(p)−At(p))∂v(p)∂pi
= 0

∂Bt(p)
∂pi

v(p) +Bt(p)∂v(p)∂pi
= 0


At the point (λ0, p0) the result is((

∂λ
∂pi

Et(p) + λ∂Et(p)
∂pi

− ∂At(p)
∂pi

)
v(p)+

(λEt(p)−At(p))∂v(p)∂pi

)
|(λ0,p0)

= 0(
∂Bt(p)
∂pi

v(p) +Bt(p)∂v(p)∂pi

)
|(λ0,p0)

= 0



Premultiplying the first equality by ut0 we have

ut0

(
∂λ
∂pi

Et(p) + λ0
∂Et(p)
∂pi

− ∂At(p)
∂pi

)
|(λ0,p0)

v0 =0

∂Bt(p)
∂pi |(λ0,p0)

v0 +Bt
0
∂v(p)
∂pi |(λ0,p0)

=0



∂λ
∂pi |(λ0,p0)

ut0E
t(p0)v0 =

−λ0u
t
0
∂Et(p)
∂pi |(λ0,p0)

v0 + ut0
∂At(p)
∂pi |(λ0,p0)

v0

∂Bt(p)
∂pi |(λ0,p0)

v0 +Bt
0
∂v(p)
∂pi |(λ0,p0)

= 0


Suppose that rank (λ0E(p0)−A(p0)) = n−1. In

this case, we can chose u0 in such a way that ut0v0 ̸=
0.

Using the normalization condition ut0v(p) = 1 is
possible because the function ut0v(p) in p = p0 is non
zero. Then, we have that ut0

∂v(p)
∂pi |(λ0,p0)

= 0.

Lemma 21 There exists a left eigenvector such that
ut0E(p0)v0 ̸= 0.

Proof: Take into account that λ0 is a simple eigen-
value Etv0 + (λEtv1 − Atv1) ̸= 0 for all vector v1.
Taking v1 = 0, we have that Etv0 ̸= 0.

If ut0E
tv0 = 0, we have that Eu0, Au0 ∈ [v0]

⊥.
So u0 is an eigenvector of the linear map (λ0E −
A)|[v0]⊥ for the zero eigenvalue, but zero is a simple
eigenvalue of λ0E −A. ⊓⊔

Lemma 22 The matrix T0 = λ0E
t(p0) − At(p0) +

u0u
t
0 is invertible.

Proof: u0u
t
0 is a symmetric map of rank 1, u0 is

an eigenvector of eigenvalue ∥u0∥2 and [u0]
⊥ is the

null-space.
Given w ∈ KerT0, we can write w = αu0 + w1

with w1 ∈ [u0]
⊥. Then 0 = T0w and

0 = ut0T0w =
ut0(λ0E

t(p0)−At(p0) + u0u
t
0)(αu0 + w1) =

ut0(u0u
t
0)(αu0 + w1) = α(ut0u0)

2.

Then α = 0 and w = w1 ∈ Keru0ut0. Consequently
(λ0E

t(p0)−At(p0))w = 0. Taking into account that
λ0 is a simple eigenvalue, we have w = w1 = βv0 ∈
[u0]

⊥. Finally, condition ut0v0(p0) ̸= 0 implies β = 0
and T0 is invertible. ⊓⊔
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5 Bifurcation of double eigenvalues
with single eigenvector for stan-
dard systems

Let us consider an arbitrary family of linear systems
(A(p), B(p)). Let p0 be a point in the parameter space
where the matrix A(p0) = A0 has a double non-
derogatory eigenvalue λ0. Let v0, v1 be the left Jordan
chain of length 2 corresponding to λ0, i.e.

At
0v0 = λ0v0, At

0v1 = λ0v1 + v0 (18)

where w0 = αv0 and w1 = αv1 + βv0 with α ̸= 0.
Let u0 and u1 be the left Jordan chain correspond-

ing to At
0), that is

ut0A
t
0 = λ0u

t
0,

ut1A
t = λ0u

t
1 + ut0

or equivalently

A0u0 = λ0u0,
A0u1 = λ0u1 + u0.

Lemma 23 Under the previous conditions, the fol-
lowing condition holds

ut0v0 = 0, ut0v1 ̸= 0

Proof: From At
0(v1) = λ0v1 + v0, we have,

λ0u0tv1 = ut0A
t
0v1 = λ0u

t
0v1 + ut0v0. So ut0v0 = 0.

For second condition, we consider v̄0, v̄1 giving
an orthonormal basis of [v0, v1] obtained by Gram-
Schmidt process. Now we complete it to a basis
{v̄0, v̄1, . . . , v̄n−1} of the whole space.

In this orthonormal basis, the matrix of At
0 is

λ0 a12 a13 . . . a1n
0 λ0 a23 . . . a2n
0 0 a33 . . . a3n
...

...
...

...
0 0 an3 . . . ann


and the matrix of A0 is

λ0 0 0 . . . 0
a12 λ0 0 . . . 0
a13 a23 a33 . . . an3

...
...

...
...

a1n a2n a3n . . . ann


We observe that [v0, v1]⊥ is an A0-invariant subspace.

If ut0v0 = 0, we have that u0 ∈ [v0, v1]
⊥ and,

taking into account that A0u0 = λ0u0, we have that
λ0 is an eigenvalue of multiplicity at least three. In
conclusion, ut0v1 ̸= 0. ⊓⊔

We have three possibilities:

1. λ0 is not an eigenvalue of the pair
(A(p0), B(p0)) = (A0, B0), i.e. Bt

0v0 ̸= 0.

2. λ0 is a simple eigenvalue of the pair
(A(p0), B(p0)), i.e. Btv0 = 0 and Btv1 ̸= 0.

3. λ0 is a double nonderogatory eigenvalue of the
pair (A(p0), B(p0)), i.e. Btv0 = 0 and Btv1 =
0.

Example 4

1. Consider a family of systems (A(p), B(p)) with

At
0 =

0 0 0
1 3 0
0 1 3

 and Bt
0 =

(
0 1 0

)
. The

eigenvalues of At are λ0 = 3 (double) and
λ1 = 0 (simple). A Jordan chain for λ0 is
vt0 = (0, 0, 1), v1 = (0, 1, 0). As Bt

0v0 = 0
and Bt

0v1 ̸= 0, then λ0 is a simple eigenvalue of
(A0, B0). For λ1 its eigenvector w = (9,−3, 1)
satisfies Btw ̸= 0. So λ1 is not eigenvalue for
(A0, B0).

2. Consider now a family of systems (A(p), B(p))

with At
0 =

2 0 0
0 1 0
0 1 0

 and Bt
0 =

(
1 0 0

)
.

In this case, the eigenvalues of At
0 are: λ0 =

2 being simple but not being an eigenvalue of
(A0, B0), and; λ1 = 1 being double for A0 and
also double for (A0, B0).

In order to analyze the behavior of two eigen-
values λ(p) that merge to λ0 at p0, we consider a
perturbation of the parameter along a smooth curve
p = p(ε), where ε ≥ 0 is a small real perturbation
parameter and p(0) = p0.

Along the curve p(ε) = (p1(ε), . . . , pr(ε))
we have a one parameter matrix family
(A(p(ε)), B(p(ε))), which can be represented in
the form of Taylor expansion

A(p(ε)) = A0 + εA1 + ε2A2 + . . .
B(p(ε)) = B0 + εB1 + ε2B2 + . . .

(19)

with A0 = A(p0), A1 =
∑r

i=1
∂A(p(ε))

∂pi
dpi
dε ,

A2 =
1
2

(∑r
i=1

∂A(p(ε))
∂pi

d2pi
dε2

+
∑r

i,j=1
∂2A(p(ε))
∂pi∂pj

dpi
dε

dpj
dε

)
,

B0 = B(p0),
B1 =

∑r
i=1

∂A(p(ε))
∂pi

dpi
dε ,

B2 =
1
2

(∑r
i=1

∂B(p(ε))
∂pi

d2pi
dε2

+
∑r

i,j=1
∂2B(p(ε))
∂pi∂pj

dpi
dε

dpj
dε

)
where the derivatives are evaluated at p0.
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If λ0 is a double eigenvalue of At(p0) having a
unique eigenvector v0 up to a non-zero scaling fac-
tor with Bt(p0)v0 = 0, the perturbation theory (see
[13], for example) assumes that the double eigen-
value λ0 generally splits into a pair of simple eigen-
values λ under perturbation of the pair of matrices
(A(p0), B(p0)). These eigenvalues λ and the cor-
responding eigenvectors v can be represented in the
form of the Puiseux series:

λ = λ0 + ε1/2λ1 + ελ2 + ε3/2λ3 + ε2λ4 + . . .

v = v0 + ε1/2w1 + εw2 + ε3/2w3 + ε2w4 + . . .
(20)

Substituting (20) into (19), we obtain

At
0v0 = λ0v0

Bt
0v0 = 0

(21)

At
0w1 = λ0w1 + λ1v0

Bt
0w1 = 0

(22)

At
0w2 +At

1v0 = λ0w2 + λ1w1 + λ2v0
Bt

0w2 +Bt
1v0 = 0

(23)

At
0w3 +At

1w1 = λ0w3 + λ1w2 + λ2w1 + λ3v0
Bt

0w3 +Bt
1w1 = 0

...
(24)

Equation (21) is satisfied because v0 is an eigen-
vector corresponding to the eigenvalue λ0. By com-
paring equation (22) with (18), we observe that w1 =
λ1v1 + βv0 is a solution and we take w1 = λ1v1.

To find the value of λ1, we premultiply equation
(23) by ut0 and, using the given value for w1, we have

λ2
1u

t
0v1 = ut0A

t
1v0

Taking into account that ut0v1 ̸= 0, we obtain λ1:

λ1 =

√
ut0A

t
1v0

ut0v1
.
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